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Regulation of gene expression is a highly complex process that
requires the concerted action of many proteins, including se-
quence-specific transcription factors, cofactors, and chromatin pro-
teins. In higher eukaryotes, the interplay between these proteins
and their interactions with the genome still is poorly understood.
We systematically mapped the in vivo binding sites of seven
transcription factors with diverse physiological functions, five
cofactors, and two heterochromatin proteins at �1-kb resolution in
a 2.9 Mb region of the Drosophila melanogaster genome. Surpris-
ingly, all tested transcription factors and cofactors show strongly
overlapping localization patterns, and the genome contains many
‘‘hotspots’’ that are targeted by all of these proteins. Several
control experiments show that the strong overlap is not an artifact
of the techniques used. Colocalization hotspots are 1–5 kb in size,
spaced on average by �50 kb, and preferentially located in regions
of active transcription. We provide evidence that protein–protein
interactions play a role in the hotspot association of some tran-
scription factors. Colocalization hotspots constitute a previously
uncharacterized type of feature in the genome of Drosophila, and
our results provide insights into the general targeting mechanisms
of transcription regulators in a higher eukaryote.
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Transcription factors are proteins that control the expression
of specific sets of genes. They act by binding to regulatory

DNA elements in the vicinity of these genes. The target speci-
ficity of transcription factors is modulated by protein–protein
interactions with other factors and by the local chromatin
structure. Because of the complexity of these interactions,
prediction of the in vivo binding sites of transcription factors
based on sequence alone still is unreliable (1–3). In the past few
years, experimental approaches have been developed to identify
the binding sites of transcription factors in living cells, on a
genomewide scale (4–6).

Systematic mapping studies in yeast have indicated that each
promoter is typically bound by a small set of transcription factors.
The vast majority of promoters is occupied by only a few
proteins, and binding of �10 proteins to a single promoter is rare
(�1%) (7, 8). Although transcription factors frequently act in a
combinatorial fashion (9), these results suggest that the tran-
scription regulatory network in yeast shows a substantial degree
of ‘‘division of labor,’’ where each factor (or a small group of
factors) binds a distinct set of genes.

Genomes of higher eukaryotes are much more complex than
those of yeast species, raising the question of how transcription
factor-binding sites are organized in such more complex ge-
nomes. Although sequence analysis of the genomes of several
higher eukaryotes has indicated that transcription factor con-
sensus motifs tend to be clustered in the genome (10–12), it is
still unclear whether these clusters are the predominant targets
in vivo, because systematic comparative studies of the genomic-
binding patterns of regulatory proteins have not been reported
yet. So far, genomewide-mapping efforts of transcription factor

location in flies and mammals have focused on individual
proteins or on small sets of functionally related factors (4–6, 13).
Thus, our general knowledge of the interplay between various
transcription factors and their in vivo binding in the genome in
higher eukaryotes still is limited.

To gain understanding of the general principles that underlie
regulator–genome interactions, we initiated a systematic survey
of the in vivo genomic-binding patterns of a broad set of
regulatory proteins in Drosophila melanogaster. We mapped the
binding of these proteins in the Drosophila Kc cell line by using
DamID technology (14, 15) combined with genomic tiling path
arrays (16). Surprisingly, we found that the genomic localization
patterns of unrelated factors show a strong overlap. We identi-
fied many genomic sites (‘‘colocalization hotspots’’) that are
targeted by most tested transcription factors and coregulators.
Bioinformatics analysis and studies with mutated protein indi-
cate that protein–protein interactions play a role in targeting of
some regulator proteins to these hotspots. These results provide
insights into the complex network of regulator–genome inter-
actions in a higher eukaryote.

Results
We began our study in Drosophila by mapping the in vivo
genomic-binding sites of seven transcription factors from differ-
ent classes and with diverse physiological functions: Bicoid
(Bcd), GAGA factor (Gaf), Jun-related antigen (Jra), Max, odd
paired (opa), Ecdysone receptor (EcR) isoform B1 (EcRB1),
and its heterodimerization partner Ultraspiracle (USP) (Table 1,
which is published as supporting information on the PNAS web
site). Except for heterodimerization of EcRB1 and USP, no
physical or functional interactions have been reported between
any of these proteins (www.flybase.org).

The localization patterns of these seven factors were deter-
mined in the embryonic Kc cell line, which provides a homoge-
neous cell population. We used the DamID technology, which
has been used to map genomic binding of a variety of proteins
(14, 16–20). DamID involves the in vivo expression of a chimeric
protein consisting of a transcription factor of interest fused to
Escherichia coli DNA adenine methyltransferase (Dam) (15).
The expression levels of the Dam-fusion proteins are kept very
low to avoid mistargeting due to overexpression (14, 15). DNA
in the close vicinity of the natural binding sites of the transcrip-
tion factor is methylated preferentially by the tethered Dam.
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Methylated DNA fragments are isolated by using a PCR-based
method, and microarrays then are used to detect the pattern of
targeted adenine methylation, from which the localization pat-
tern of the transcription factor can be deduced (14, 16, 18, 20).
We used genomic tiling arrays containing 3,648 genomic frag-
ments of 430–920 bp, together covering 2.9 Mbp of the Adh-
cactus region of chromosome 2 of Drosophila (16).

The results for all seven transcription factors are displayed
graphically in a detailed map of the Adh-cactus region (Figs. 1
A and B and 2A; see also Fig. 7, which is published as supporting
information on the PNAS web site). The fraction of probed
regions targeted by individual proteins ranged between 3–8%.
Surprisingly, we found that there is a high degree of overlap
between the localization profiles of these seven factors. Each
factor shares at least 67% of its binding sites with one or more
other factors, and many sites are targeted by all seven factors (see
below). Correlation analysis showed that the similarity of the
profiles is in all cases statistically highly significant (Fig. 8, which
is published as supporting information on the PNAS web site).
The high degree of overlap is not restricted to the 2.9 Mbp
Adh-cactus region; we also observed it for three of the tran-
scription factors (Bcd, Gaf, and Jra) on arrays containing
�12,000 cDNA fragments, corresponding to �60% of the
Drosophila genes (Fig. 9, which is published as supporting
information on the PNAS web site). MatrixREDUCE (21, 22)
analysis of the DamID profiles of Bcd, EcRB1, Gaf, Max, and Jra
shows that they correlate strongly with the in vitro sequence
specificity predicted by using their respective known binding
motifs (Table 2, which is published as supporting information on

the PNAS web site; also see Materials and Methods). USP
correlates weakly with both its own binding motif and the binding
motif of its heterodimerization partner, EcR (P � 0.057 and
0.035, respectively.). Using a reporter gene containing an ecdy-
sone response element, we could also show that Dam does not
interfere with the function of EcRB1 (L.V.S. and K.P.W.,
unpublished results). These results suggest that the Dam-fusion
proteins are functional. Taken together, our results reveal a high
degree of colocalization for a wide range of transcription factors
that (with the exception of EcRB1 and USP) were thought to be
functionally unrelated.

To further verify our DamID results, we performed ChIP, a
method for detecting protein–DNA interactions that is funda-
mentally different from DamID (4, 5, 23). The ChIP profile of
endogenous Gaf (i.e., in untransfected cells) is in good agree-
ment with the Gaf DamID profile (Fig. 3). This agreement also
was reported recently in an independent comparison (24). We
also confirmed the DamID microarray data for a subset of
transcription factors and genomic locations by using quantitative
PCR (Fig. 10, which is published as supporting information on
the PNAS web site), ruling out that our results are caused by a
microarray artifact.

To investigate whether the high degree of colocalization is
caused by nonspecific protein–DNA interactions, we determined
the DamID profile of the DNA-binding domain (DBD) of the
sequence-specific yeast transcription factor Gal4p (Fig. 1C). We
found that Gal4p DBD binds significantly to 16 fragments on the
array (corresponding to 11 loci), but there is no overlap with the
localization profile of the other proteins (Figs. 1 and 8).
The observed DamID profile of Gal4 DBD correlates strongly
with the Gal4p consensus motif (Table 2), which confirms that
the Gal4 DBD-Dam fusion protein is functional. We conclude
that the colocalization of the seven Drosophila transcription
factors is not simply due to nonspecific DNA binding.

Transcription factors rely on interactions with other proteins,
such as corepressors, coactivators, and chromatin proteins, to
regulate gene expression. We analyzed whether these proteins
also associate with transcription factor-binding sites. Indeed, the
corepressors Groucho (Gro), Rpd3, and Sin3 and the coactivator
Brahma (Brm) colocalize strongly with the transcription factors
and with each other (Figs. 2, 7, and 8). The heterochromatin
proteins HP1a and Su(var)3-9 do not associate with the same loci
as the transcription factors (Figs. 2, 7, and 8), but they do target
transposable elements and a few other loci, consistent with
previously reported data (16, 18). Heterochromatin protein 1c
(HP1c) a euchromatic homologue of HP1a of unknown function
(18, 25), shows a similar profile as the cofactors (Figs. 2, 7, and
8), suggesting that HP1c may act as a transcriptional regulator.

Visual inspection of the DamID patterns indicated that the
Adh-cactus region contains many sites where all transcription
factors and cofactors associate together. To identify such sites in
a systematic and unbiased way, we applied machine learning
methods to classify protein composition along the Adh-cactus
region of Drosophila into a number of distinct ‘‘chromatin types.’’
We first used a self-organizing map (SOM) algorithm (26) to
generate a 2D representation of the DamID data for all 14
proteins, in which different areas correspond to genomic regions
with different protein compositions (Fig. 4A). Next, we used
adaptive K means clustering (29) to assign each probed genomic
fragment to one of eight distinct chromatin types (Fig. 4B). This
number of chromatin types was determined in an unsupervised
manner (29). Although this classification is likely to represent an
oversimplification of chromatin diversity, it provides a useful
framework for further analysis. Chromatin types that can be
distinguished are characterized by, for instance, binding by HP1a
and Su(var)3-9 only (‘‘heterochromatin’’; fragments of type 5)
and no binding of any protein (fragments of type 2). Fragments
of type 1 show high binding by all proteins except HP1a and

Fig. 1. Detailed view of DamID profiles generated by using genomic tiling
arrays. (A) Predicted genes in a 0.5-Mb section of the Adh-cactus region
(position 13,700,381 to 14,199,715 on chromosome 2L) of Drosophila. (B)
DamID binding ratios of seven transcription factors and Pol II. (C) DamID
binding ratios of Gal4p-DBD. Ratios that are statistically significant and at
least 2-fold above background are highlighted by colors in B and C.
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Su(var)3-9 and include 166 fragments congregating in 61 loci.
We will refer to loci of type 1 as ‘‘colocalization hotspots’’ (Figs.
2B and 7). We also visualized the DamID data of GAL4-DBD
and the ChIP data of Gaf in the SOM plane (Fig. 4C). This
visualization shows clearly that GAL4-DBD as detected by
DamID is completely absent from hotspots, whereas binding of
Gaf as detected by ChIP is strongly enriched in hotspots, in
agreement with the Gaf DamID results.

We computationally screened a collection of transcription
factors of known sequence specificity (30, 31) for preferential
binding to colocalization hotspots (see Materials and Methods).
Fig. 5 shows that the hotspot regions on average have higher
predicted affinity for three of the proteins that we mapped in this
study, Gaf, Jra, and Max. In addition, we found motifs of several
other proteins to be enriched in the colocalization hotspots
(Table 3, which is published as supporting information on the
PNAS web site), predicting that these proteins also bind to
hotspots. Surprisingly, the motifs for Bcd, EcR, and USP are not
enriched in hotspots (Fig. 5). This result suggests that these latter
factors are not recruited to hotspots via protein–DNA interac-
tions mediated by their own DNA-binding domain but rather via

protein–protein interactions with one or more other DNA-
bound proteins.

We investigated the mechanism of regulator targeting to
hotspots more directly for the transcription factor Bcd. For this
purpose, we generated DamID profiles of Bcd mutants that
either lacked a functional DBD (BcdK50A; refs. 32 and 33) or
consisted of the DBD alone (Fig. 7). Strikingly, BcdK50A localizes
to the hotspots, whereas the DBD alone is not detected in most
hotspots (Fig. 4D). The Bcd DBD binds significantly to 69
fragments on the array, only �25% of which also are bound by
WT Bcd. Its DamID signal correlates significantly better with
the predicted affinity for Bcd than the DamID profile of WT
Bcd; by contrast and as expected, the BcdK50A DamID signal
entirely lacks correlation with the Bcd consensus (Table 2).
Taken together, these results suggest that protein–protein inter-
actions help target Bcd to the hotspots, possibly in competition
with the direct recruitment of Bcd to its DNA-binding sites in the
genome.

We noticed that colocalization hotspots are often located in
predicted genes: 41 of the 61 hotspot regions overlap with 37
genes (Fig. 2C). To test whether hotspots occur preferentially in
actively transcribed regions, we first mapped the binding of the

Fig. 2. Complete view of DamID profiles of the entire 2.9-Mb Adh-cactus region. (A) DamID data for all 14 Drosophila proteins that were studied. Each probe
on the array is represented by a vertical line, the color of which indicates the relative binding of the protein (ranging from white equals background level to
black equals strongest binding). (B) Location of hotspots, i.e., probes that are part of cluster 1 in Fig. 4B. (C) Location of all predicted genes in the probed region.
Genes that overlap with at least one hotspot are highlighted in orange, and their names are indicated.

Fig. 3. Comparison of Gaf DamID to Gaf ChIP. Gaf DamID-binding ratios across the entire 2.9 Mb Adh-cactus region are plotted on the positive y axis (dark blue),
and Gaf ChIP-binding ratios are plotted on the negative y axis (light blue).
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18-kDa subunit of RNA polymerase II (Pol II) in the Adh-cactus
region. The DamID profile of Pol II shows strong overlap with
the binding profiles of the transcription factors (Figs. 1, 7, and
8), and hotspots were significantly enriched in Pol II (Fig. 4E).
Essentially the same result was obtained when we analyzed a

previously reported Pol II-binding profile in Kc cells that was
obtained by ChIP (27), again indicating that the overlap is not
caused by a bias in the DamID method (Figs 4E and 8).
Furthermore, comparison of our data to chromosomewide ex-
pression profiling in Kc cells (27) also shows that mRNA levels
correlate with the binding of the transcription factors (Fig. 8) and
are significantly elevated in colocalization hotspots (Fig. 4E).

Recent studies in Drosophila cells have shown that the histone
variant H3.3 is specifically deposited in transcribed genes and
their f lanking regions (28). Analysis of these data revealed that
colocalization hotspots are strongly enriched in H3.3 (Fig. 4E).
We found that 95% of the hotspot probes have H3.3�H3 ratios
that are above the mean of the entire Adh-cactus region (P �
2e�16; Student t test), indicating that colocalization hotspots
virtually are restricted to chromatin regions containing H3.3.
Taken together, our analyses indicate that hotspots occur pref-
erentially in regions of active transcription.

We wondered whether colocalization hotspots, which we
identified in Kc cells, also may be linked to sites of transcription
during fly development. We therefore analyzed the develop-
mental expression profiles of genes overlapping with hotspots by
using published genomewide expression profiles from six differ-
ent developmental stages (34). Strikingly, this analysis (Fig. 6)
showed that during embryogenesis, hotspot-containing genes are
expressed at significantly higher levels than hotspot-free genes.
This difference disappears later in development. A modest
increase of hotspot-associated gene expression also is observed
in adult females, which may be due to the fact that female ovaries
contain large amounts of oocytes with maternally loaded
mRNA. These results indicate that colocalization hotspots occur
preferentially in regions with increased transcription activity
during early development.

Fig. 4. Definition of hotspot regions and other types of chromatin by SOM analysis and K means clustering of DamID profiles of 14 proteins. (A) SOM analysis
visualized for each protein in SOM component planes consisting of a matrix of 24 � 12 hexagonal nodes. Each node includes tiling array fragments with similar
binding behavior across all 14 DamID profiles. Nodes that are close to each other in the SOM component plane are more alike than nodes that are farther away.
The color scale represents the mean binding Z score in each node. (B Left) Further simplification of SOM data by adaptive K means clustering, resulting in the
classification of the combined protein-binding patterns into eight types of chromatin, each marked in a different color. (B Right) The area of each node reflects
the number of tiling array fragments included in that node. (C) DamID profile of GAL4-DBD and ChIP profile of Gaf visualized in the same SOM matrix as in A
and B. (D) DamID profiles of Bcd DBD and BcdK50A visualized in the same SOM matrix as in A and B. BcdK50A binds strongly to the hotspots (‘‘type 1,’’ outlined
by a white line), whereas Bcd DBD does not. (E) SOM matrix visualization of (from left to right) DamID profile of the 18-kDa subunit of Pol II, ChIP profile of the
CTD subunit of Pol II (data from ref. 27), mRNA expression levels (data from ref. 27), and histone H3.3 over H3 ratios (data from ref. 28). Note the enrichment
of all of these transcription-related marks in the hotspot cluster (outlined by a white line).

Fig. 5. Sequence signals enriched in the eight different chromatin types shown
in Fig. 4B. Information from the TRANSFAC (30) and JASPAR (31) databases was
used to construct a position-specific affinity matrix (31) representing the se-
quence specificity of each transcription factor. Each position-specific affinity
matrix was used to predict a profile along the entire Adh-cactus region of the
binding affinity relative to the optimal binding sequence. Difference between
average for probed regions of a given chromatin type (see Fig. 4B) and all other
regions, represented as a t value computed by using a paired t test. Note the
increased predicted affinity of colocalization hotspots (type 1 regions) for Gaf,
Jra, and Max.
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Discussion
We report here that the target loci of several unrelated tran-
scription factors and cofactors strongly overlap with each other
in the genome of Drosophila. Colocalization hotspots, which are
targeted by all seven transcription factors and six of eight other
proteins tested, represent extreme cases of this phenomenon.
Because Drosophila contains �700 transcription factors (35), we
predict that many more factors will show strong colocalization
and that hotspots may recruit up to a few hundred different
proteins. This observation contrasts with results in yeast where
overlap between transcription factors was relatively rare and
hotspots were not apparent (7, 8).

The mechanism by which such a large number of proteins are
recruited to specific genomic loci remains to be elucidated. Our
observation that Bcd does not require its DBD for hotspot
association, together with the lack of enrichment of the consen-
sus motifs for USP, Jra, and Bcd in hotspots, indicates that at
least some transcription factors do not directly bind the DNA in
hotspots, but instead are recruited through protein–protein
interactions. We note that the DamID maps represent the
average protein occupancy over time and over many cells, and,
therefore, it is quite possible that the composition of hotspot-
associated complexes is variable and dynamic (36).

The function of hotspots is unclear, but at least three models
can be envisioned that are not mutually exclusive. First, hotspots
may represent general ‘‘sinks’’ or ‘‘buffers’’ that sequester many
regulator molecules. Thus, hotspots may regulate the effective
concentration of free transcription factor molecules in the
nucleus. This model is in agreement with our observation that
wild-type Bcd fails to bind to several loci containing the Bcd
consensus motif, whereas the Bcd DBD (that is not tethered to
hotspots) does bind to these loci. Second, hotspots may be
directly involved in the regulation of nearby genes, similar to
enhancers. Unlike classical enhancers, however, hotspots may
associate with hundreds of proteins, many of which may have
only a minor contribution to the overall effect on gene expres-
sion. Third, hotspots could mediate physical interactions be-
tween distant loci in the genome, as has been reported for several
transcription factor-rich loci (37, 38). Regardless of what could
be the regulatory function of hotspots, our results have impor-
tant implications for our understanding of the mechanisms that
determine the target specificity of transcription factors and for

the interpretation of genomewide protein occupancy data in
higher eukaryotes.

Materials and Methods
DamID and ChIP. Detailed descriptions of the methods for map-
ping protein location are described in Supporting Materials and
Methods, which is published as supporting information on the
PNAS web site.

Data Analysis. All measured ratios in the DamID and ChIP exper-
iments were log2-transformed and normalized to the median value
of all Adh-cactus fragments. Release 3.1 of the Drosophila genome
sequence and annotation was used (39). For the SOM analysis, an
average over replicates was calculated, and probes with one or more
missing values were excluded, leaving 3,140 probes. For each
protein, the data were then normalized to zero mean and unit
variance (Z scores). Training of the SOM was performed as
described in ref. 27 by using a hexagonal topology of 24 � 12 nodes.
Nodes in the converged SOM then were clustered into eight sets by
using a K means algorithm, the optimal number of clusters being
determined by the Davies-Bouldin index (29).

To define the number of hotspots in the Adh-cactus region, we
determined the number of clusters of contiguous fragments
(‘‘contigs’’) of the hotspot type (i.e., type 1, as defined by SOM
analysis). If hotspot fragments were interrupted by 1–2 frag-
ments that had missing values for all (or most) of the proteins,
we regarded those hotspot fragments as part of the same contig.
In this way, we found 61 contigs varying from 1 to 10 fragments.

To uncover sequence signals enriched in the loci targeted by each
Dam fusion protein, we predicted the affinity of each probed region
for a large number of transcription factors. To this end, we
downloaded position-specific nucleotide count matrices from
TRANSFAC (30) and JASPAR (31), added a pseudocount of one
at each position, and normalized each position by dividing by the
count for the most frequent base. The resulting position-specific
affinity matrix was used to predict the (relative) affinity of each
probed region for the corresponding transcription factor as de-
scribed in refs. 21 and 22. MatrixREDUCE software (21, 22) was
used to compute the t value for the regression coefficient between
DamID signal and predicted affinity. The data were preprocessed
by taking the residuals from a multivariate model fit based on
counts for all mono- and dinucleotides, as well as the motif GATC,
the site methylated by Dam. To uncover sequence signals enriched
in the probed regions making up a given chromatin type, we
compared the distribution of their predicted affinity with that of all
other probed regions by using a paired t test.

To compare the Pol II ChIP and chromosomewide expression
profiling data (27) to the data generated in this study, we
resampled the 1.5-kb tiling fragment data from MacAlpine et al.
(27) as follows. For each Adh-cactus fragment, we determined
the overlapping fragment(s) on the microarray of the MacAlpine
study. If there was one overlapping fragment, we assigned the
mean value of that fragment to our Adh-cactus fragment. If two
or more partially overlapping fragments were found (which was
the maximum), we assigned a weighted average of the mean
values of these two fragments to our Adh-cactus fragment. For
analysis of the enrichment of H3.3, we subtracted for each 100-bp
tiling array fragment in the data set from Mito et al. (28) the
mean H3 log ratio from the mean H3.3 log ratio. The resulting
H3-corrected log ratios then were resampled to match our
Adh-cactus tiling fragments.

For the analysis of the developmental expression patterns, we
used the genomewide data from Stolc et al. (34). Hybridization
intensities of each exon probe were log2-transformed, data from
replicate experiments were averaged, and exon probes corre-
sponding to the same gene subsequently were averaged to obtain
a single log2 expression level for each gene at each developmen-
tal stage. Next, these values were normalized to the mean log2

Fig. 6. Different developmental expression profiles of hotspot-containing
genes (red) compared with hotspot-free genes (black) in the Adh-cactus
region. Values indicate mean log2 expression levels (arbitrary units; data taken
from ref. 34). P values indicate the statistical significance of the difference for
each developmental stage (Wilcoxon test, Bonferroni-corrected for multiple
testing); NS, not significant (P � 0.01).
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value, first by column (developmental stage) then by row (gene).
The developmental expression levels of genes overlapping with
one or more hotspots were compared with those of genes not
overlapping with hotspots.

Supporting Information. Additional data can be found at Fig. 11
and Data Set 1, which are published as supporting information
on the PNAS web site.
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